Horizontal Full Bar Chart in JavaScript

We use here MindFusion JavaScript library for Charts and Gauges to build this horizontal stacked bar chart that renders custom tooltips:

Run the sample from this link.

You can download the source code together with the libraries used from the link at the bottom of the post.

I. General Setup

We split our chart in two files – one is the web page that hosts an HTML Canvas element that will render the chart. The other file is a JavaScript code-behind file that contains the code for the chart.

We need to add reference to two JavaScript library files that provide the charting and drawing functionality that we need:

MindFusion.Common.js
MindFusion.Charting.js

We place them in a Scripts folder at the same level as our web page and JavaScript code behind file.

<script type="text/javascript" src="Scripts/MindFusion.Common.js"></script>
<script type="text/javascript" src="Scripts/MindFusion.Charting.js"></script>

We also add a reference to the code-behind file that we call StackedBarChart.js:

<script type="text/javascript" src="StackedBarChart.js"></script>

Now we need to create an HTML Canvas element and we must provide it with an id so we can reference it in our JS code:

<canvas id="barChart" width="600px" height="400px"></canvas>

The size of the Canvas determines the size of the chart.

II. Chart Instance and General Settings

We add some namespace mappings that allow us to reference classes from the Chart library in a more consice manner:

var Charting = MindFusion.Charting;
var Controls = MindFusion.Charting.Controls;
var Collections = MindFusion.Charting.Collections;
var Drawing = MindFusion.Charting.Drawing;
var GridType = MindFusion.Charting.GridType;
var ToolTip = Charting.ToolTip;

Then we create an instance of the BarChart control. We need to get the Dom Element that corresponds to the Canvas that we’ve prepared for the chart:

var chartEl = document.getElementById('barChart');
chartEl.width = chartEl.offsetParent.clientWidth;
chartEl.height = chartEl.offsetParent.clientHeight;
var chart = new Controls.BarChart(chartEl, Charting.BarLayout.Stack);

The BarChart constructor supports a second argument that indicates the type of the bar chart to render.

We set the bar chart to horizontal with the horizontalBars property. We also make the bars thicker than normal – the property for this is barSpacingRatio It measures the thickness of the bars as a percente of the bar width.

chart.horizontalBars = true;
chart.barSpacingRatio = 0.2;

III. The Data Series

We want our chart to render labels as tooltips, inside the bars and also we want custom labels at the Y-axis. The predefined BarSeries class accepts 4 lists with data: one for bar data and three with labels inside the bars, at the top of the bars and at the X-axis. So, it is not an exact match for what we want to do and we need to customize it.

We will create our own custom BarSeries that we will call SeriesWithLabels. We will inherit the BarSeries class and override its constructor and getLabel members to provide the desired data for the desired type of labels.

We override the constructor by creating three new variables, which receive the data for the bars and the labels:

var SeriesWithLabels = function (barValues, innerLabels, yLabels) {
    Charting.BarSeries.apply(this, [barValues, innerLabels, yLabels]);
	
	this.yLabels = yLabels;
	this.innerLabels = innerLabels;
	this.values = barValues;
    
};

SeriesWithLabels.prototype = Object.create(Charting.BarSeries.prototype);

Note that before we do anything else in the new constructor we need to call the apply method of the BarSeries class to transfer the provided data to the base class. We also need to create a prototype of the new series and also define its constructor:

 Object.defineProperty(SeriesWithLabels.prototype, 'constructor', {
   	value: SeriesWithLabels,
   	enumerable: false,
   	writable: true
   });

Next we will override the getLabel method. This is the method that returns the correct label according to the requested label kind and the index of the label. We said we want to support inner labels, tooltips and Y-axis labels. So, we make sure our implementation of getLabel returns exactly those labels:

SeriesWithLabels.prototype.getLabel = function (index, kind) {
    if ((kind &amp; Charting.LabelKinds.YAxisLabel) != 0 &amp;&amp; this.yLabels)
        return this.yLabels.items()[index];

    if ((kind &amp; Charting.LabelKinds.InnerLabel) != 0 &amp;&amp; this.innerLabels)
        return this.innerLabels.items()[index];
	
	if ((kind &amp; Charting.LabelKinds.ToolTip) != 0)
        return getPercentLabel(index, this);
   
    return "";
};

Getting the correct inner and top label is easy – we just return the label at the requested position. What is more work is building the tooltip. We want our tooltip to calculate the portion of the part in the stacked bar the mouse currently is over, to the entire bar. This means we need to calculate the data of all bar portions, which is a combination of the values at the requested position in all three bar series. We do this calculation in a separate method called getPercentLabel.

Before we get to the getPercentLabel method let’s create 3 instances of our custom SeriesWithLabels class:

var labels = new Collections.List([
	"POSITION", "SALARY", "LOCATION", "COLLEAGUES", "WORKTIME"
]);

// create sample data series
var series1 = new SeriesWithLabels(new Collections.List([123, 212, 220, 115, 0.01]), new Collections.List([123, 212, 220, 115, 0]), labels);
var series2 = new SeriesWithLabels(new Collections.List([53, 132, 42, 105, 80]), new Collections.List([53, 132, 42, 105, 80]), null);
var series3 = new SeriesWithLabels(new Collections.List([224, 56, 138, 180, 320]), new Collections.List([224, 56, 138, 180, 320]), null);

The third argument in the SeriesWithLabels constructor is the lists with labels at the Y-axis. We need just one list with labels and we set it with the first series. The other series take null as their third argument.

We need to create a collection with the series and assign it to the series property of the chart:

var series = new Collections.ObservableCollection(new Array(series1, series2, series3));
chart.series = series;

There is a special property called supportedLabels that is member of Series and tells the chart, what type of labels this Series needs to draw. In our case we need to indicate that the first series renders labels at the Y-axis, the inner labels and tooltips. The other two series render inner labels and tooltips:

series1.supportedLabels = Charting.LabelKinds.YAxisLabel | Charting.LabelKinds.InnerLabel | Charting.LabelKinds.ToolTip;
series2.supportedLabels = Charting.LabelKinds.InnerLabel | Charting.LabelKinds.ToolTip;
series3.supportedLabels = Charting.LabelKinds.InnerLabel | Charting.LabelKinds.ToolTip;

Now let’s get back to the method that calculates the tooltip:

function getPercentLabel(index, series)
{
	var value1 = series1.values.items()[index];
	var value2 = series2.values.items()[index];
	var value3 = series3.values.items()[index];
	
	var theValue = series.values.items()[index];	
	var result = theValue/(value1+value2+value3) * 100;
	
	return Number(result).toFixed(0) + "%";	
};

In it we calculate the sum of all data that is rendered by the stacked bar at the specified index. Then we convert the data to percent and format it to have no numbers after the decimal point. That gives us a little inacurracy sometimes, when the value gets rounded to the next number and the sum of all percents actually is 101. You might want to change the formatting to toFixed(2) if you want to see the exact number rendered.

IV. Axes and Tooltip

By default the X-axis shows a title and both axes render the auto scale for the data of the chart. We need to hide the scale and we also hide the ticks that are rendered at the interval values:

chart.xAxis.title = "";
chart.yAxis.title = "";
chart.showXCoordinates = false;
chart.showYCoordinates = false;
chart.showXTicks = false;
chart.showYTicks = false;

We don’t want our chart to render axes at all, so we will draw them with the color of the chart background. You can also draw them with a transparent brush:

chart.theme.axisStroke = new Drawing.Brush(Drawing.Color.knownColors.White);

The tooltip renders automatically when the user hovers a bar. We can customize it with the properties of the static Tooltip class:

ToolTip.brush = new Drawing.Brush("#fafafa");
ToolTip.pen = new Drawing.Pen("#9caac6");
ToolTip.textBrush = new Drawing.Brush("#5050c0");
ToolTip.horizontalPadding = 6;
ToolTip.verticalPadding = 4;
ToolTip.horizontalOffset = 76;
ToolTip.verticalOffset = 34;
ToolTip.font = new Charting.Drawing.Font("Verdana", 12);

We add some padding to the tooltip text and increase its font size. We also render the tooltip with a little offset that will place it inside the bar, ater the inner label.

V. Styling and Legend

Styling o the charts is done through instances of SeriesStyle derived classes. The instance is assigned to the seriesStyle property of the Chart In our case we want to color each bar in three sections. That means the portion of the bar that corresponds to the same series is colored in the same color for all its members. That kind of styling is supported by the PerSeriesStyle class. It accepts a list with brushes and strokes and paints all elements of the series corresponding to the index of the brush in the list with this brush:

// create bar brushes
var thirdBrush = new Drawing.Brush("#97b5b5");
var secondBrush = new Drawing.Brush("#5a79a5");
var firstBrush = new Drawing.Brush("#003466");

// assign one brush per series
var brushes = new Collections.List([firstBrush, secondBrush, thirdBrush]);
chart.plot.seriesStyle = new Charting.PerSeriesStyle(brushes, brushes);

The theme property is the main property for styling the chart. The Theme class exposes fields for customizing the appearance of all chart elements. We first adjust the font and size of the axis labels – remember we have labels only at the Y-axis:

chart.theme.axisTitleFontSize = 14;
chart.theme.axisLabelsFontSize = 11;
chart.theme.axisTitleFontName = "Verdana";
chart.theme.axisLabelsFontName = "Verdana";
chart.theme.axisLabelsFontSize = 14;
chart.theme.axisStroke = new Drawing.Brush(Drawing.Color.knownColors.White);

The labels inside the bars are called data labels and there are dataLabels*** properties that regulate their appearance:

chart.theme.dataLabelsFontName = "Verdana";
chart.theme.dataLabelsFontSize = 14;
chart.theme.dataLabelsBrush = new Drawing.Brush("#ffffff");

The dataLabelsBrush is also used when the legend labels are rendered. In order to make them visible we need to set a darker background for the legend:

chart.theme.legendBackground = new Drawing.Brush("#cccccc");
chart.theme.legendBorderStroke = new Drawing.Brush("#cecece");

The labels inside the legend are taken from the title property of the Series instances:

series.item(0).title = "CAREER START";
series.item(1).title = "MIDDLE OF CAREER";
series.item(2).title = "CAREER END";

Finally we should not forget to call the draw method that actually renders the chart:

chart.draw();

With this our costimization of the chart is done. You can download the source code of the sample and the MindFusion JavaScript libraries used from this link:

Download the Horizontal Stacked Bar Chart Sample: Source Code and Libraries

About Charting for JavaScript: MindFusion library for interactive charts and gauges. It supports all common chart types including 3D bar charts. Charts can have a grid, a legend, unlimitd number of axes and series. Scroll, zoom and pan are supported out of the box. You can easily create your own chart series by implementing the Series interface.
The gauges library is part of Charting for JavaScript. It supports oval and linear gauge with several types of labels and ticks. Various samples show you how the implement the gauges to create and customize all popular gauge types: car dashboard, clock, thermometer, compass etc. Learn more about Charting and Gauges for JavaScript at https://mindfusion.eu/javascript-chart.html.

New Release for the Free JS Chart Library

MindFusion Free JS Chart has a new release with the following new features:

– All Series can accept now simple JavaScript array-s as arguments instead of Collections.List instances
– The ToolTip class is greatly extended with many new properties that allow you to customize the apparance and position of tooltips
– The Color.knownColors field lists all standard CSS color names
– Brush and Pen instances can be created with simple strings that specify the HTML code of the color as argument instead of Color objects.
– The yLabelAlignment property of BiaxialChart specifies horizontal alignment of Y-axis labels.
– Texts are now properly underlined when FontStyle.Underline is set.

Free JS Chart is MindFusion charting library that is offered free of charge for commercial use. No attribution is required.

More about MindFusion Free JS Chart at https://mindfusion.eu/free-js-chart.html

Multi Series Line Chart With Custom ToolTips in JavaScript

In this blog post we will build a line chart with 4 different series and custom labels on both axes. The chart renders tooltips with custom formatting. You can see the chart online here:

I. Initial Setup

We start by creating a blank HTML page and there we initialize the HTML Canvas element that will be needed by the Js Chart library.

<canvas id="chart" style="width: 100%; height: 100%; display: block;"></canvas>

You can initialize the canvas as you want – there are no special requirements as to the size, position, scroll settings or anything else. What is important is that you add an id for that canvas – it will be used by the chart library. At the bottom of the page, right before the closing BODY tag we add a reference to the charting JavaScript files that represent the chart library:

<script type="text/javascript" src="Scripts/MindFusion.Common.js"></script>
<script type="text/javascript" src="Scripts/MindFusion.Charting.js"></script>

We also add a reference to another JavaScript file called LineChartTooltips.js. We haven’t created it yet, but this will be the file that will hold the JavaScript code for our chart.

<script type="text/javascript" src="LineChartTooltips.js"></script>
<strong>II. Initializing the Line Chart</strong>

In the LineChartTooltips JavaScript file we first include a reference to the Intellisense file so we can use code completion.


<pre>/// <reference path="Scripts/jspack-vsdoc.js"></reference>

Then we add mappings to the namespaces that we want to use:

var Controls = Charting.Controls;
var Collections = Charting.Collections;
var DateTimeSeries = Charting.DateTimeSeries;
var Drawing = Charting.Drawing;
var ToolTip = Charting.ToolTip;

Now we create the JavaScript chart object. We need a reference to the HTML canvas element, which we get using its id:

var chartEl = document.getElementById('chart');
chartEl.width = chartEl.offsetParent.clientWidth;
chartEl.height = chartEl.offsetParent.clientHeight;

We use the clientWidth and clientHeight properties of the offsetElement for the chart to give the chart its size.

Next we create the LineChart control and set its title and subtitle.

// create the chart
var lineChart = new Controls.LineChart(chartEl);
lineChart.title = "Women as a percentage in all S&amp;E occupations";
lineChart.subtitle = "1993-2010";

III. Labels

The labels for the X and Y axes are set with two lists:

var xlabels = new Collections.List([
    "1993", "1995", "1997", "1999", "2003", "2006",
    "2008", "2010"]);

var ylabels = new Collections.List([
    "0%", "10%", "20%", "30%", "40%", "50%",
    "60%", "70%"]);

By default the labels at the axes are the intervals. We can replace them with the labels of a given chart series by using the supportedLabels property. This property tells the control at which chart element the labels of the series should be rendered – X or Y axis, tooltip, data labels etc. The members are from the LabelKinds enumeration.

The LineChart control uses series that support X and Y values. The best match is the Series2D class. This class supports one list with labels, which are always drawn at the data points. The easiest thing for us to do is to customize the Series2D and make it accept two lists with labels, which we will show them on both axes. Here is how we create the custom class by inheriting from Series2D

SeriesWithAxisLabels = function (xValues, yValues, xLabels, yLabels) {
    this.yLabels = yLabels;
    Charting.Series2D.apply(this, [xValues, yValues, xLabels]);
};

SeriesWithAxisLabels.prototype = Object.create(Charting.Series2D.prototype);

Our custom class is called SeriesWithAxisLabels. It accepts two lists with labels in the constructor. With one of them we call the constructor of the base class. The other we assign to a new property called yLabels.

Now we need to override the getLabel method and return the right label for the X and Y axis.

SeriesWithAxisLabels.prototype.getLabel = function (index, kind) {
    if ((kind &amp; Charting.LabelKinds.XAxisLabel) != 0 &amp;&amp; this.labels)
        return this.labels.items()[index];

    if ((kind &amp; Charting.LabelKinds.YAxisLabel) != 0 &amp;&amp; this.yLabels)
        return this.yLabels.items()[index];
   
    return "";
};

The getLabel method is responsible for providing the correct label according to the kind of labels that is requested. Here we check if we are asked for a label at the X or Y axis and return the label with the correct index from the xLabels or yLabels arrays. Here is how we create that series, which serves only to provide labels for the axes:

var series0 = new SeriesWithAxisLabels(
    new Collections.List([1, 2, 3, 4, 5, 6, 7, 8]),
    new Collections.List([0, 10, 20, 30, 40, 50, 60, 70]),
    xlabels, ylabels
);
series0.supportedLabels = Charting.LabelKinds.XAxisLabel | Charting.LabelKinds.YAxisLabel;
lineChart.series.add(series0);

Note that the data for the X and Y values of series0 corresponds to the positions on the axes where the labels should be rendered.

IV. Data

The data for the chart is provided by two series. They are also of type Series2D However, we do not want them to render the labels at the data points, which is their default behaviour. We would customize once again the Series2D class and make the labels be used for tooltips and not the data points.

We define a new SeriesWithToolTip class that overrides Series2D

SeriesWithToolTip = function (xValues, yValues, labels) { 
    Charting.Series2D.apply(this, [xValues, yValues, labels]);
};

SeriesWithToolTip.prototype = Object.create(Charting.Series2D.prototype);

The difference is the getLabel method. When asked for a label for the tooltip it returns the label at the given position from the series’ labels list:

SeriesWithToolTip.prototype.getLabel = function (index, kind) {
    if ((kind &amp; Charting.LabelKinds.ToolTip) != 0 &amp;&amp; this.labels)
        return this.labels.items()[index];   

    return Charting.Series2D.prototype.getLabel.apply(this, [index, kind]);
};

We create a data series from the SeriesWithToolTip kind this way:

//first series
var series1 = new SeriesWithToolTip(
    new Collections.List([1, 2, 3, 4, 5, 6, 7, 8]),
    new Collections.List([21.3, 21.5, 21.7, 23, 26.3, 26.1, 26.3, 27.5])
);

series1.title = "All S&amp;E occupations";
var tooltips = new Collections.List();

for (let step = 0; step &lt; series1.yData.count(); step++) {
    tooltips.add(series1.title + " for " + xlabels.items()[step] + ": " +
        series1.yData.items()[step] + "%");
}
series1.labels = tooltips;
series1.supportedLabels = Charting.LabelKinds.ToolTip;
lineChart.series.add(series1);

We generate the tooltip in a list, because we want the text to combine data from the xLabels and its yData list.

V. Styling the Chart

the JavaScript Chart library supports several styles to be applied on the chart depending on what you want to achieve. In our case the best choice is the PerSeriesStyle class, which colours all the elements of a Series with the subsequent brush from its strokes and fills collections.

// create line brushes
var firstBrush = new Drawing.Brush("transparent");
var secondBrush = new Drawing.Brush("#EA3F36");
var thirdBrush = new Drawing.Brush("#1A3D95"); 
var fourthBrush = new Drawing.Brush("#717173");
var fifthBrush = new Drawing.Brush("#407D39");

var style = new Charting.PerSeriesStyle();
style.fills = style.strokes = new Collections.List([firstBrush, secondBrush, thirdBrush, fourthBrush, fifthBrush]);
style.strokeDashStyles = new Collections.List([Drawing.DashStyle.Dash, Drawing.DashStyle.Dash,
Drawing.DashStyle.Dash, Drawing.DashStyle.Dash, Drawing.DashStyle.Dash]);
style.strokeThicknesses = new Collections.List([2, 2, 2, 2, 2]);
lineChart.plot.seriesStyle = style;

The PerSeriesStyle class also provides us with properties to specify the DashStyle and the strokeThickness of the brushes.

The styling of the axes and the fonts is done via the properties of the Theme class. Each chart has a theme property of type Theme. You can use it to customize many properties of the chart:

lineChart.legendTitle = "";
lineChart.gridType = Charting.GridType.Horizontal;
lineChart.theme.axisTitleFontSize = 14;
lineChart.theme.axisLabelsFontSize = 12;
lineChart.theme.subtitleFontStyle = Charting.Drawing.FontStyle.Bold;
lineChart.theme.titleFontStyle = Charting.Drawing.FontStyle.Bold;
lineChart.theme.subtitleFontSize = 16;
lineChart.theme.dataLabelsFontSize = 12;

Note the dataLabelsFontSize property here. It regulates the font not only for the data labels but for the labels of the legend. That is why we set it, though we do not render data labels. There are several dataLabels properties like dataLabelsFontName, which customize different aspects of the labels at chart series and legend.

VI. Legend

You can show the legend with showLegend property, which is true by default. The legendTitle property sets the title of the legend, which we set to an epty string. The labels for each series are taken from the series’ title property:

lineChart.legendTitle = "";

series1.title = "All S&amp;E occupations";
.................
series2.title = "Computer/mathematical scientists";
..................
series3.title = "Engineers";

We can customize the background and border of the legend through properties of the theme or the LegendRenderer:

lineChart.legendRenderer.background = new Drawing.Brush("#f2f2f2");
lineChart.legendRenderer.borderStroke = new Drawing.Brush("#c0c0c0");

VII. ToolTips

The tooltips are automatically rendered when the user hovers over a data point. We make the data points visible by setting showScatter to true:

lineChart.showScatter = true;

Then we set different properties of the TooltTip class to achieve the desired look of the tooltips:

ToolTip.brush = new Drawing.Brush("#fafafa");
ToolTip.pen = new Drawing.Pen("#9caac6");
ToolTip.textBrush = new Drawing.Brush("#717173");
ToolTip.horizontalPadding = 6;
ToolTip.verticalPadding = 4;
ToolTip.horizontalOffset = -6;
ToolTip.verticalOffset = -4;
ToolTip.font = new Charting.Drawing.Font("Arial", 12, Charting.Drawing.FontStyle.Bold);

The ToolTip class is a static class and we can set the properties directly.

At the end, we should always call draw() to see the chart correctly rendered on the screen:

lineChart.draw();

You can download the sample with the JavaScript chart libraries and the Intellisense file from this link:

http://mindfusion.eu/samples/javascript/chart/JsLineChartTooltips.zip

About Charting for JavaScript: MindFusion library for interactive charts and gauges. It supports all common chart types including 3D bar charts. Charts can have a grid, a legend, unlimitd number of axes and series. Scroll, zoom and pan are supported out of the box. You can easily create your own chart series by implementing the Series interface.
The gauges library is part of Charting for JavaScript. It supports oval and linear gauge with several types of labels and ticks. Various samples show you how the implement the gauges to create and customize all popular gauge types: car dashboard, clock, thermometer, compass etc. Learn more about Charting and Gauges for JavaScript at https://mindfusion.eu/javascript-chart.html.

A JavaScript Application for Server Load Monitoring (Continued)

We continue the ServerLoad tutorial with the diagram.

I. Create and Style The Diagram

We create a new JavaScript file named diagram.js in the Scripts folder of the project and reference it in the HTML.


<a href="http://Scripts/MindFusion.Diagramming.js">http://Scripts/MindFusion.Diagramming.js</a> 

Now, in this file we make some namespace mapping to access easy the classes we need:

var Diagram = MindFusion.Diagramming.Diagram;
var DiagramLink = MindFusion.Diagramming.DiagramLink;
var ShapeNode = MindFusion.Diagramming.ShapeNode;
var Style = MindFusion.Diagramming.Style;
var DashStyle = MindFusion.Drawing.DashStyle;
var Alignment = MindFusion.Diagramming.Alignment;

var Rect = MindFusion.Drawing.Rect;
var LayeredLayout = MindFusion.Graphs.LayeredLayout;
var LayoutDirection = MindFusion.Graphs.LayoutDirection;

// a shortcut to the Events class
var Events = MindFusion.Diagramming.Events;

The code for the diagram does not need to be in a single method call, so we’ll use the document.ready event handler:


$(document).ready(function () {

// create a Diagram component that wraps the "diagram" canvas
diagram = MindFusion.AbstractionLayer.createControl(Diagram, null, null, null, $("#diagram")[0]);
//set both base and head link shape size
diagram.setLinkHeadShapeSize(2);
diagram.setLinkBaseShapeSize(2);
diagram.setLinkBaseShape(MindFusion.Diagramming.Shape.fromId("Arrow"));
................

});

As with the line chart, we create a diagram object using the canvas id from the html page. Then we make some link customization: we set the base and head shape with setBaseShape and setHeadShape to “Arrow” to indicate that data flows in two directions between servers.

Now let’s use a Style instance to set the stroke, text color and font name. Then we set the link style this way:


//customize the link appearance
var linkStyle = new Style();
linkStyle.setStroke("#c0c0c0");
linkStyle.setTextColor("#585A5C");
linkStyle.setFontName("Verdana");
linkStyle.setFontSize(3);
diagram.setStyle(linkStyle);

When users click on the diagram it is important not to allow them to create new links and nodes. That’s why we use setBehavior to change the default way the diagram responds to user actions:


//diagram items can only be selected
diagram.setBehavior(MindFusion.Diagramming.Behavior.SelectOnly);

We create the graph in the buildDiagram method. First, we call clearAll to remove all diagram items to make sure only nodes we’ve created are visible:


//generate diagram nodes
function buildDiagram() {
 diagram.clearAll();

};

II. Diagram Items

Let’s create the diagram nodes. We use png icons we’ve saved in an “icons” folder in the website. The background of each node is transparent ( setTransparent ), which means only the image will be visible. Then we add the node to the items of the diagram:


var rect = new Rect(0, 0, 15, 15);

var node = new ShapeNode(diagram);
node.setBounds(rect);
//the web server
node.setImageLocation("icons/web_server.png");
node.setTransparent(true);
diagram.addItem(node);

We create similar nodes for the data server, the clients and the network servers. The links are created with the DiagramLink class. The constructor takes the origin and target node of the link as parameters. We set an setId to the links, which is important and we add a label :

//add a link between the client and the server
var link = new DiagramLink(
       diagram, node, diagram.nodes[0]);
//same as the title of a given chart series
link.setId("Client" + i);
link.addLabel("Client" + i);
diagram.addItem(link);

Let’s not forget to emphasize the two links that correspond to the two series that are initially emphasized on the chart:


//bolden the two major links
diagram.links[5].setStrokeThickness(2.0);
diagram.links[8].setStrokeThickness(2.0);

III. Layout

We’ve created the diagram items but we need to arrange them. We use the LayeredLayout algorithm:


//the layeredLayout arranges the diagram properly - into layers
function applyLayeredLayout() {
    var layout = new LayeredLayout();
    layout.direction = LayoutDirection.TopToBottom;
    layout.siftingRounds = 0;
    layout.nodeDistance = 20;
    layout.layerDistance = 20;
    diagram.arrange(layout);
    diagram.resizeToFitItems();
}

As you see it is very easy to apply a layout with the diagramming control. You just create an instance of the layout, set the properties of your choice and call arrange (). In our case we need the layout direction to be LayoutDirection.TopToBottom We also adjust the nodeDistance and layerDistance and set the number of siftingRounds (attempts to unwind split links) to 0.

IV. Events

The diagram is meant to be interactive. We use the linkSelected and clicked events to handle selection of links and click on an area of the diagram, unoccupied by any items.


// add listeners
diagram.addEventListener(Events.linkSelected, onLinkSelected);
diagram.addEventListener(Events.clicked, onClicked);

When a link is selected, we need to emphasize the line graphic that corresponds to this link. We also emphasize the link itself. In addition, we must adjust the stroke and thickness of the other line graphs and diagram links. We do this in the onLinkSelected method:


//handle the linkSelected event
function onLinkSelected(sender, args) {

    //get the style of the series
    var seriesStyle = lineChart.plot.seriesStyle;
    seriesStyle.strokeThicknesses.clear();

    //thicken just the selected series, the others should be transparent
    for (var j = 0; j &lt; lineChart.series.count() ; j++) {
        seriesStyle.strokeThicknesses.add(0.15);
        diagram.links[j].setStrokeThickness(1.0);
    }
.....
}


First we get the series style and then we use setStrokeThickness to reset the thickness of diagram links and series to their default values. After we’ve done that we need to get the selected links and emphasize them:


//bolden all selected links in the diagram as well
for (var m = 0; m &lt; diagram.selection.links.length; m++) {
     var clickedLinkId = diagram.selection.links[m].getId();
     diagram.selection.links[m].setStrokeThickness(3.0);

When we’ve done that we need to find the series that correspond to these links and emphasize them as well:


//find the series that correspond to the selected links
for (var i = 0; i &lt; lineChart.series.count() ; i++) {
      var _series = lineChart.series.item(i);


      //adjust the stroke thicknesses
      if (_series.title == clickedLinkId) {

          seriesStyle.strokeThicknesses.removeAt(i);
          seriesStyle.strokeThicknesses.insert(i, 3);
      }

   }

All this is followed by a call to the draw method that repaints the chart.


//repaint the chart
lineChart.draw();

The next event handler – the onClicked method resets the thicknesses to their default values:


//reset the chart thicknesses
function onClicked(sender, args) {
    resetThicknesses();

}

This is done in the resetThicknesses method, which uses the seriesStyle field of the line chart:


/* bolden the two major series, the others should be very thin.
bolden the two major diaglinks as well. */
function resetThicknesses() {
   var seriesStyle = lineChart.plot.seriesStyle;
   seriesStyle.strokeThicknesses.clear();

   for (var j = 0; j &lt; 5; j++) {
      seriesStyle.strokeThicknesses.add(0.15);
      diagram.links[j].setStrokeThickness(1.0);
   }
.......
}


V. Tyre Separators

The diagram is divided into three parts by three separator lines. These lines are unconnected DiagramLink instances that have no head and base shape and have a custom position for the label. We use absolute positioning to locate the arrows. To do this we need to know the current size of the diagram:


//add the separators for the tyres
//first get the size of the diagram
var width = diagram.getBounds().width;
var height = diagram.getBounds().height;

Then the separator link is created with both origin and destination node being null:


//separator for the Clients tyre
//the link starts from the left edge and eds to the right edge of the digram
var link = new DiagramLink(
		diagram, new MindFusion.Drawing.Point(2, (height / 3.5)),
        new MindFusion.Drawing.Point(width, (height / 3.5)));
link.setShadowOffsetX(0);
link.setShadowOffsetY(0);
link.setStrokeDashStyle(DashStyle.Dash);
link.setStroke("#DCDCDC");
//remove the shapes at both ends
link.setHeadShape(null);
link.setBaseShape(null);
//do not allow this link to be selected
link.setLocked(true);
//move the link label to the right
var linkLabel = link.addLabel("Clients");
linkLabel.setControlPointPosition(1, -5, 0);
diagram.addItem(link);

Note that we’ve used the setLocked property of the link and have set it to true. This means the link cannot participate in user interaction – it can’t be selected, moved, resized. That’s what we want.

And with this our sample server load application is ready. Once again, here is how it looks:

Server Load Application in JavaScript

Server Load Application in JavaScript

Run The Application

Use this link to download the full sample with all necessary libraries and scripts.

Download Source Code

You can also fork it from GitHub.

Visit the web pages of the diagramming and charting (with gauges) JavaScript libraries to learn more about these tools. Visit the MindFusion forums if you need technical support or want to ask further questions about MindFusion developer tools.

JS Chart: Getting Started

This is step-by-step tutorial on how to setup a JavaScript chart using MindFusion JS Chart library. In the sample here we will use a pie chart but the steps are applicable to any type of chart with small modifications.

The video for this tutorial is uploaded on YouTube at https://www.youtube.com/watch?v=kc1nNe4p770

I. The Web Page

Basically, our sample consists of an HTML file and a Scripts folder, which will hold all used *.js files. In the web page that will hold the control we add two JS references.

The first one is the config file:


 <script type="text/javascript" src="Scripts/config.js"></ script>

config.js contains information about the paths to js libraries used by the charts and gauges, including jquery. You should check it and edit the paths if necessary. The reference to config.js should be placed before the reference to require.js, which comes next:


<script data-main="Scripts/PieChart" src="Scripts/require.js"></script>

We will define our chart in a PieChart.js file that we will place in the Scripts folder.

In the body of the file we create a div that holds a canvas.


<div style="position: absolute; left: 0px; top: 100px; bottom: 0px; right: 0px">
         <canvas id="pieChart" width="800" height="600"></canvas>
<div>

The canvas renders the chart and we will access and use it in the JavaScript file. That’s why it is important that the canvas has an id.

II. Setup of the *.JS File

In the PieChart.js file we create a single method that will be responsible for building and customizing the chart:


define(["require", "exports", 'MindFusion.Charting'], function (require, exports, m) {
....
}

The first few lines define variables used to reference various chart namespaces:


var Charting = m.MindFusion.Charting;
var Controls = m.MindFusion.Charting.Controls;
var Collections = m.MindFusion.Charting.Collections;
var Drawing = m.MindFusion.Charting.Drawing;

III. General Chart Settings

We create the chart from the canvas in the HTML file.


var pieChart = new Controls.PieChart( document.getElementById('pieChart'));

Then we set a title for the chart and we increase the font size for the title:


pieChart.title = "Corporate Sales";
pieChart.theme.titleFontSize = 24;	

IV. Series

The pie chart holds a single PieSeries.. For it we need data, inner and outer labels.
The data is a list with numbers:


var values = new Collections.List([20, 30, 10, 40, 35]);

The labels are a list with strings. Here is how we create the series:


pieChart.series = new Charting.PieSeries( values, null, new Collections.List(["a", "b", "c", "d", "e"]));

If you run the chart now you’ll see the pie with labels painted in a light green color.

initial-js-chart

So, we need

V. Styling

The styling includes brushes for the pie pieces:


var brushes = new Collections.List([
new Drawing.Brush("#081b67"),
new Drawing.Brush("#cc2020"),
new Drawing.Brush("#7D7D7D"),
new Drawing.Brush("#67a6c7"),
new Drawing.Brush("#d0d0d0")
    ]);
var seriesBrushes = new Collections.List();
   seriesBrushes.add(brushes);

a single pie pen:


var pens = new Collections.List([
     new Drawing.Brush("#ffffff")
]);
var seriesPens = new Collections.List();
 seriesPens.add(pens);

a thickness for the pie pen:


var thicknesses = new Collections.List([
        15
		
]);

var seriesThicknesses = new Collections.List();
seriesThicknesses.add(thicknesses);

and a DashStyle for it:


var dashStyles = new Collections.List([
        Drawing.DashStyle.Solid
]);
var seriesDashStyles = new Collections.List();
  seriesDashStyles.add(dashStyles);

We could have set different pens, thicknesses and DashStyle for each pie piece, but we want all the pieces to be outlined with a single pen.

Note that those settings are of type array and are nested in another array. That is because the styling might apply to multi-series charts and each array is responsible for styling the elements of each series.

In our sample we style the pie chart with a PerElementSeriesStyle object, which we assign to the seriesStyle property:


pieChart.plot.seriesStyle = new Charting.PerElementSeriesStyle(seriesBrushes, seriesPens, seriesThicknesses, seriesDashStyles);

VI. Legend

The legend needs to be styled – the background, border and title need to be specified and customized to make it look better.

The legend title is a property of the chart.


pieChart.legendTitle = "Period";

The styling settings for a legend can be accessed through the theme property:


pieChart.theme.legendBackground = new Drawing.Brush("#ffffff");
pieChart.theme.legendBorderStroke = new Drawing.Brush("#cecece");
pieChart.theme.legendBorderStrokeThickness = 1.0;
pieChart.theme.legendTitleFontSize = 16;

The legend label is read from the title of each series in the chart. In our case we use:


pieChart.series.title = "2016";

With this our chart is complete. A hint: if you want to make the pie labels from inner to outer, you just need to change the position of the null value in the PieSeries constructor.

JS Pie Chart

JS Pie Chart

Download Sample

MindFusion JS Chart is an interactive library for charts and gauges written purely in JavaScript. It supports all common chart types, multiple series, custom data,financial charts, a large selection of gauges and rich styling capabilities. The elegant architecture of the library allows you to create dashboards, charts with multiple different types of series in a single plot, unlimited number of axes, reusable styling themes, various oval and linear gauges. The innovative approach to data lets you define your own data classes by implementing a single interface.
The library also boasts a rich event set, zoom, pan, dragging of the legend and a set of many popular gauges. It is designed and implemented to provide JS developers with the perfect tool to create beautiful, interactive dashboards fast and easy. Download trial directly at http://mindfusion.eu/JavaScript.Chart.zip Get your license today at http://www.javascript-chart-buy.html